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Abstract An emerging approach in the design of novel antimicrobial drugs to control 
pathogenesis is through targeting biofilm formation in bacteria. Biofilm formation is a quorum 
sensing-linked virulence factor that plays a major role in the development of antibiotic resistance. 
The research findings highlighted the action of a bioactive compound Docosanol and Docosanol 
gold nanoparticles on the inhibition of biofilm formation against drug-resistant pathogens,  
Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae.   
The successful synthesis of gold nanoparticles using Docosanol was confirmed through 
characterization such as change in solution color to pink, UV–visible spectra peak at 550 nm and 
DLS analysis that showed particle mean size at 48.3 nm + 2.1 nm. Significantly lower biofilm 
formation was noted using Docosanol against all test bacterial pathogens. Docosanol-AuNPs 
showed higher biofilm formation inhibition in S. aureus and P. aeruginosa compared to 
Docosanol alone. This study emphasized the potential of Docosanol and Docosanol-AuNPs in 
developing strategies against biofilm formation, microbial pathogenesis and resistance. 
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Introduction 
 

Despite the initial success of antibiotics, its unrestrained use led to the 
development of antimicrobial resistance that poses serious burden to world 
healthcare systems.  The incidences of antibiotic resistance are increasing rapidly 
with long term impacts on health systems (Gómez-Núñez et al., 2020), and this 
is expected to aggravate in the coming years. Although drug resistance increase 
is evident, the progress of drug development for drug-resistant pathogens still 
needs to be accelerated. Hence, the need for new approaches to lower incidence 
of drug-resistant infections and resistance is now crucial.  Serious bacterial 
infections from drug-resistant pathogens highlight the need for effective and 
innovative drugs. 
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Biofilm production is a quorum sensing (QS)-mediated virulence factor 
and considered one of the key mechanisms of pathogenesis in biofilm-forming 
bacteria.  Biofilm is a polysaccharide matrix that offers protection and stability 
to a community of bacteria (Høiby et al., 2015) and contributes to their resistance 
to antibiotics by minimizing diffusion of substances across its matrix (Sun et al., 
2013; Uruén et al., 2021).  Biofilms, thus, have become the main focus in anti-
QS drug development (Diaz et al., 2015) and considered a promising approach 
to address antimicrobial resistance. To efficiently target bacterial virulence, 
disruption of the QS system was developed as a practical approach to manage 
pathogens.  QS allows bacteria to coordinate vital processes and to synchronize 
behaviors such as virulence in order to effect pathogenicity.  This is made 
possible by the production of signaling molecules that enables them to 
communicate among the species (interspecies) and between species 
(intraspecies).  Targeting this communication system allows for the control of 
virulence without affecting growth, thereby addressing antimicrobial resistance 
that evolve by imposing selective pressure through the overuse of antimicrobials.  

Plant compounds are recognized inhibitors of QS systems and provide 
new prospects in developing drugs against biofilm formation. They have been 
known to possess active groups of metabolites that act against several 
mechanisms of pathogenesis in microbes. The resemblance in the structure of the 
phytochemicals to QS signals and their ability to block signal receptors account 
for their action as effective QS inhibitors (Kalia, 2013). Phytochemicals have 
been documented to block QS activities and are recognized as one of the most 
effective natural sources of QS inhibitors that suppress intra- and inter-species 
QS communication systems (Teplitski et al., 2000) and reduce microbial 
pathogenesis (Rasmussen and Givskov, 2006). These natural compounds also 
offer an advantage due to their chemical stability (Rasmussen and Givskov, 
2006) and non-toxicity (Hentzer et al., 2003), and thus safe for human health. 
Docosanol is a plant-derived compound mainly known for its antiviral activity 
against herpes virus infections (Pope et al., 1998; McKeough and Spruance, 
2001; Leung and Sacks, 2004; Hammer et al., 2018; Sadowski et al., 2021).  It 
works by interfering the fusion between the plasma membrane and the virus 
envelope, avoiding viral cell entry and subsequent viral replication (Pope et al., 
1998; Leung and Sacks, 2004; Sadowski et al., 2021).  Aside from the reported 
inhibition of biofilm and virulence factors against Methicillin-Resistant 
Staphylococcus aureus (MRSA) (Lakshmi et al., 2020) and Klebsiella 
pneumoniae (Umaru et al., 2019), the actions of docosanol on bacteria has not 
been fully explored. 

Among the innovative strategies for therapeutic applications, 
nanotechnology-based drugs emerged as one of the promising approaches that 
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offers advantages in enhanced transport of drugs. Nanotechnology had paved for 
development of drugs to new heights as nanoparticles proved to be a potent tool 
for drug delivery. It enhances drug delivery through extremely small dimensions 
that enables it to immediately penetrate target microbes or organs. The green 
synthesis of nanoparticles draws appeal in biomedical applications as it presents 
an advantage over toxic chemical and physical processes that involves the use of 
hazardous substances (Salem and Fouda, 2021).  The green synthesis of gold 
nanoparticles (AuNPs) is of particular interest since metal-based NPs offers 
better control of bacteria.  Aside from its extremely small dimensions that 
improves cell surface association, AuNPs offer structural properties that 
compromises the bacterial architectural integrity (Gómez-Núñez et al., 2020).  
Several plants have been evaluated in the synthesis of metallic NPs with much 
success. These biologically synthesized nanoparticles have shown to have higher 
antimicrobial activity and have shown to improve biofilm inhibition actions of 
some plant compounds (Fernando et al., 2020; Fernando and Judan Cruz, 2020; 
Velasco et al., 2020; Judan Cruz et al, 2021; Santos et al, 2021).  This paper 
highlighted the potential of biofilm inhibition strategies through the use of 
Docosanol and Docosanol-synthesized gold nanoparticles. 
 
Materials and methods  
 
Gold Nanoparticle (AuNP) synthesis using Docosanol 

 
Docosanol was obtained from Sigma-Aldrich (Germany).  Docosanol was 

prepared as stock solution at a concentration of 3.4 mg/ml by DMSO.  The 
method for the biological synthesis of AuNPs was adapted from Fernando et al., 
(2020). Docosanol was mixed in 10-3M concentration of Gold chloride III.  This 
was incubated in a 250-ml Erlenmeyer flask under dark conditions at room 
temperature with constant stirring with a magnetic stirrer for 60 minutes. The 
change in color indicated synthesis of AuNPs.   This was purified by 
centrifugation at 4000 rpm for 20 minutes. Pellets were dispersed in deionized 
water. The synthesized nanoparticles was evaluated visually for precipitate 
formation or aggregation prior to use.   
 
UV-visible spectroscopy analysis 

 
The synthesis of gold nanoparticles was confirmed by UV–Vis 

Spectroscopy analysis using BioSpectrometer (Eppendorf).  The resulting 
absorption value was noted. 
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Dynamic Light Scattering (DLS) analysis 
 
The particle size of the AuNPs produced in the synthesis was determined 

at a scattering angle of 173° using Nanoparticle Analyzer SZ-100 (Horiba 
Scientific). 

 
Disk diffusion assay for antibacterial activity of Docosanol and Docosanol-
AuNPs against Staphylococcus aureus, Pseudomonas aeruginosa, 
Escherichia coli, and Klebsiella pneumoniae 
  

The study evaluated the following bacterial strains: Staphylococcus aureus 
PNCM 1582, Pseudomonas aeruginosa PNCM 1335, Escherichia coli PNCM 
1634, and Klebsiella pneumoniae PNCM 1754.   

Each test bacteria were grown for 16-18 hours in Mueller Hinton Agar 
(MHA) at 37oC and then transferred to sterile distilled water with the turbidity 
adjusted to McFarland 0.5 standard.  MHA plates were inoculated with the 
standardized culture. A sterile cotton swab dipped into the bacterial suspension 
was streaked in three different directions over the entire surface of the agar to 
ensure even distribution.  On empty, sterile petri plates, 20μl of each treatment 
was pipetted onto 6-mm sterile blank antibiotic discs and allowed to stand for a 
few minutes to eliminate excess liquids. Using sterile forceps, infused discs were 
then transferred carefully to each other into MHA previously inoculated with the 
given pathogens separately. Treatments were done in triplicates.  Distilled water 
served as negative control. After 24 to 48 hours of incubation, the appearance of 
the zone of inhibition around each paper disc was noted.  
 
Biofilm formation assay 

 
Overnight cultures (180 μl) of each test bacteria were added with 20 µl of 

corresponding sub-MICs of Docosanol and Docosanol-AuNPs individually in 
microtiter plates and incubated at 30 °C for 40 h. After incubation, the wells were 
rinsed with sterile distilled water five (5) times to remove planktonic cells, air-
dried for 45 min, and stained with 150 µl of 1% crystal violet solution. The plates 
were rinsed to remove excess stain for five (5) times. To destain the wells for 
quantification of biofilm production, 200 µl of 95% ethanol was added.  
Subsequently, 100 μl from each well was transferred to a new microtiter plate 
and the OD values were measured at 570 nm (MultiSkan FC, Thermo Scientific). 
Culture medium added with only bacteria served as control. 
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Statistical analysis 
 
Data were shown in means ± standard deviations (SD).  Differences in 

quantified biofilms were analyzed through independent sample Tukey’s Honest 
Significance Difference Test with 0.05 level of significance. 
 
Results 
 
Characterization of Synthesized Gold Nanoparticles (AuNPs) using Docosanol 

 
The color of the solution changed from yellow to pink after 60 minutes of 

incubation at room temperature indicating AuNP formation (Figure 1a). The 
UV–vis spectra also confirmed the formation of gold nanoparticles which 
showed the SPR peak at 550 nm (Figure 1b). The size of Docosanol AuNPs 
measured using the dynamic light scattering (DLS) is at approximately 48.3 nm 
+ 2.1 nm with monodisperse distribution (Figure 1c).   
 

 
Figure 1. Synthesized gold nanoparticles using Docosanol (a) change in color to 
pink; (b) UV-Vis absorbance peak (c) DLS analysis 
 
Antibacterial activity 
 
 No antibacterial activity was observed using Docosanol and Docosanol-
AuNPS against the test bacteria.  This was noted in the absence of the zone of 
inhibition for all the evaluations done in the disk diffusion assay.  The absence 
of antibacterial activity is necessary for the accuracy of the subsequent biofilm 
formation assay to rule out the effects of an antibacterial-mediated decrease in 
biofilm production. 
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Docosanol and Docosanol-AuNPs inhibit biofilm formation in the test bacteria 
 
The mean OD values in all test bacteria treated with Docosanol and 

Docosanol-AuNPs show a significant decrease in biofilm formation (Figure 2). 
Docosanol inhibited biofilm formation in S. aureus (OD 0.926), P. aeruginosa 
(OD 1.11), E. coli (OD 0.234) and K. pneumoniae (OD 0.103) compared to the 
negative control (media + bacterial suspension only) (S. aureus OD 1.949; P. 
aeruginosa OD 2.874; E. coli OD 0.77; and K. pneumonia OD 0.725). All AuNPs 
treatments significantly inhibited biofilm formation in all test bacteria compared 
to the negative control: S. aureus (OD 0.248); P. aeruginosa (OD 0.28); E. coli 
(0.136) and K. pneumoniae (0.097). Notably, Docosanol-AuNPs treatments in S. 
aureus (0.248) and P. aeruginosa (0.28) showed a significantly higher degree of 
biofilm inhibition compared to Docosanol alone (0.926; 1.11).  
 

Figure 2. Mean OD values of Docosanol and Docosanol-AuNPs against S. 
aureus, P. aeruginosa, E. coli and K. pneumoniae 
 
Discussion 
 

Docosanol-AuNPs synthesis was confirmed through several indications. 
The change in color from yellowish to pink indicates the successful formation of 
AuNPs through the use of the bioactive compound as reducing agent (Mubarak 
et al., 2011; Mukherjee et al., 2016; Ovais et al., 2016). The distinctive pinkish 
hue is due to the surface plasmon resonance (SPR) property of the AuNPs 
(Ngumbi et al., 2018; Inbakandan et al., 2010). The SPR peaks detected with 
UV-vis is one of the principal approaches to confirm the synthesis of AuNPs and 
had been highly utilized in the determination of the metallic NP sizes (Ngumbi 

0

0.5

1

1.5

2

2.5

3

3.5

S. aureus P. aeruginosa E.coli K. pneumoniae

Docosanol Docosanol-AuNPs Control



International Journal of Agricultural Technology 2024 Vol. 20(6):2245-2258 
 

2251 
 
 

 

et al., 2018). Due to the SPR, AuNPs develop a somewhat pink to reddish color 
as particles become smaller as it leads to the absorption of the blue light and 
reflection of red (Lee et al., 2018). Hence, the color change is proportional to the 
size in the NPs, where an increase in size will cause a shift in wavelength where 
red is absorbed showing a bluish coloration (Lee et al., 2018). The decrease in 
intensity and conjugation length from 595 to 550 nm also suggests decrease in 
particle size during synthesis (Emmanuel et al., 2017).  

The DLS analysis also indicated the mean size at approximately 48.3 nm + 
2.1 nm, which is a confirmed nanosize.  This extremely reduced size of AuNPs 
in this study emphasizes their biomedical potential as nanostructures have a high 
degree of uniformity and stability, and can effectively infiltrate the cell and cell 
processes improving the delivery of target molecules (Decuzzi et al., 2017). The 
nanosize also influence their entry and interactions within the biological systems, 
and host responses (Moreno-Vega et al., 2012). This suggests that the efficacy 
of compounds, or drugs, may be enhanced through encapsulation in a nano-sized 
carrier. The achievement of size at a nanoscale is critical in fully attaining the 
biomedical prospects of NP products, specifically to combat microbial 
pathogenesis. 

All treatments exhibited higher inhibition in biofilm formation in all test 
bacteria. This observed biofilm inhibition may be attributed to the action of 
Docosanol and the extremely reduced dimensions of the nanoparticles.  
Docosanol is known for its pharmacological potential that includes antiviral 
activities (Pope et al., 1998; McKeough and Spruance, 2001), anti-inflammatory 
action (Spruance, 2002; Awan et al., 1998) and potential antidiabetic action 
(Jhong et al., 2015). For antimicrobial activities, Docosanol was found effective 
against MRSA and K. pneumonie in previous studies (Lakshmi et al., 2020). This 
is the first paper that reports the action of Docosanol and Docosanol AuNPs 
against drug-resistant pathogenic bacteria biofilm formation inhibition and the 
first to report the successful synthesis of gold nanoparticles using Docosanol. 

Natural products are chief sources of innovative antipathogenic agents. 
Drugs based on phytoactive compounds form a highly recognized approach in 
pharmacology (Cruz et al., 2007) to target QS systems in bacteria and therefore 
can be incorporated in schemes towards bacterial management. Hence, the search 
for antipathogenic therapies based on natural products should be maximized to 
overcome biofilm-associated infections, and Docosanol provides a new prospect. 
Several other plant metabolites have been reported to inhibit QS systems in 
bacteria. Major metabolites such as alkaloids, tannins and flavonoids are known 
anti-quorum sensing agents (Balangcod et al, 2012; Morah and Otuk, 2015) that 
specifically are known to inhibit biofilm formation by reducing the 
exopolysaccharides (EPS), proteins and DNA in the extracellular matrix (ECM) 
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(Tiwari et al., 2017).  Potent phytoactive compounds against biofilm were 
identified, these include quercetin against E. faecalis (Qayyum et al., 2018) and 
P. aeruginosa (Ouyang et al., 2016); phloretin inhibits biofilm formation in E. 
coli (Lee et al., 2011) and downregulated biofilm-associated genes against 
Listeria monocytogenes  (Wei et al., 2020) and Salmonella (Shuai-Cheng et al., 
2016) and other QS-regulated genes in Pectobacterium brasiliense (Pun et al., 
2021); hordenine effectively suppressed biofilm in P. aeruginosa (Zhou et al., 
2018). Genistein, protocatechuic acid, p-hydroxybenzoic acid, and resveratrol 
demonstrated biofilm formation inhibition in S. aureus (Morán-Pereira et al., 
2018). Hamamelitannin reduces biofilm activity in several microbes (Cobrado et 
al., 2012). Other plant metabolites with known QSI activities include curcumin 
(Nazzaro et al., 2013), furanones (Nazzaro et al., 2013), phenols and phenolic 
acids (Yu et al., 2013; Kumar et al., 2014; Ramanujam et al., 2014), terpenes and 
sesquiterpenes (Amaya et al., 2012; Paza et al., 2013) and rosmarinic acid 
(Nazzaro et al., 2013). A growing number of active components from plants are 
continuously tested for their anti-biofilm formation and other QS-related 
activities that prove their potential in biomedical applications.  

Interestingly, biofilm formation was found significantly lower in 
treatments with biosynthesized gold nanoparticles using Docosanol against S. 
aureus and P. aeruginosa.  This shows the potential of using synthesized 
nanoparticles in improving the efficiency of controlling biofilm formation in 
drug resistant pathogens.  This may be attributed to an improved delivery system 
of the compounds through reduced particle size and exhibit larger surface area to 
volume ratio (Kamat et al., 2002; Geoprincy et al., 2013) that permits facilitated 
access to the highly complex cell membrane.   The other Docosanol- AuNPs 
treatments have comparable effects with Docosanol alone i.e., E. coli and K. 
pneumoniae. In these cases, nanoparticle synthesis and its actions can still be 
optimized through the use of a higher concentration of gold chloride. 
Nevertheless, this study reported on the successful synthesis of Docosanol-
AuNPs, and its actions can still be explored through the subsequent experiments, 
e.g. increase in concentration of the gold chloride in the synthesis of 
nanoparticles and other bioassays. 

The decrease in biofilm production in the test bacteria displays the potential 
of Docosanol and the synthesized Docosanol-AuNPs to effectively permeate 
within the bacterial membranes. One of the key determinants of pathogen 
virulence and antimicrobial resistance is the formation of biofilms. This is a 
particularly important factor in antimicrobial drugs as the biofilm offers an 
efficient blocking layer for resisting antibiotics (Ahmed et al., 2016; Sriramulu, 
2013; Algburi et al., 2017). It is important to note that these results were 
demonstrated in human pathogenic bacteria such as S. aureus, P. aeruginosa, E. 
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coli and K. pneumoniae. These bacteria are drug-resistant that cause acute and 
chronic medical device-associated infections in hospitals (Bryers, 2008; Chibber 
et al., 2013; Ahmed et al., 2016; Chambers and DeLeo, 2009) and pose serious 
concerns in global healthcare. S. aureus has long been recognized as one of the 
most important bacteria that cause disease in humans. It is the leading cause of 
soft tissue infections and can cause serious infections such as bloodstream 
infections, pneumonia, or bone and joint infections and if passes through the 
bloodstream or internal tissues, these bacteria may cause a variety of potentially 
serious infections (Taylor and Unakal, 2022).  P. aeruginosa form resistant 
biofilms (Parkins et al., 2001) and cause a long list of life threatening chronic 
infections through biofilms that include cystic fibrosis pneumonia, otitis media, 
and bacterial prostatitis (Ma et al., 2012; Tolker-Nielsen, 2014; Chadha et al., 
2022). It is also an ideal organism to explore biofilms and effects on biofilms 
((Parkins et al., 2001; Chadha et al., 2022). Biofilms caused by E. coli are 
difficult to eradicate and contribute to urinary tract and intestinal infections 
(Sharma et al., 2016) with an armory of antimicrobial resistance mechanisms that 
include a large number of antibiotic inactivating enzymes such as beta-
lactamases (Katongole et al., 2020).  This is also the case for K. pneumoniae 
(Nirwati et al., 2019). Aside from UTI and gastrointestinal tract infections, K. 
pneumoniae can be observed in immunocompromised individuals (Guerra et al., 
2022). It should be noted that infections caused by these bacteria are mostly due 
to biofilm formation, hence, ways to inhibit biofilms and curb antibiotic 
resistance becomes a critical concern.  

Antibiotic use has risen in recent years as a result of a rising number of 
infections, necessitating measures to combat bacterial resistance (Sriramulu, 
2003). Since present antimicrobial approaches and drugs cannot adequately 
address this issue, the discovery of potential agents remains necessary to control 
the evolution of microbial pathogenicity. This paper emphasizes the 
pharmacological potential of Docosanol and the green synthesis of AuNPs using 
Docosanol in the control of biofilms in bacterial human pathogens while 
avoiding the risk of developing antimicrobial resistance.  Although this study 
conveyed the significant inhibition of biofilm formation in pathogenic bacteria, 
the exact processes and genetic pathways leading to inhibition were not explored 
and presents an avenue for detailed and deeper investigations.  
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